Phaser3 Ruleta de preguntas

Hace unos días estuve hablando con un posible cliente sobre la posibilidad de realizar un pequeño juego de preguntas y respuestas que sería usado en el marco de una exposición.

Al final dicho proyecto no prosperó, por que luego no volví a ser contactado, pero de todas formas me parecía una buena escusa para realizar un pequeño proyecto en Phaser Framework.

Pueden verlo andando en: https://demos.greenborn.com.ar/ruleta_html5/

y el repo en: https://github.com/Greenborn/ruleta_html5

En que consiste el juego

El juego se puede dividir en 3 vistas o escenas, en la primera contamos con una ruleta que se acciona con un botón, la cual al detenerse se selecciona una categoría luego de lo cual se pasa a la siguiente escena.

En donde se presenta una pregunta al azar correspondiente a la categoría seleccionada con 4 posibles respuestas, una vez seleccionada la respuesta, se pasa a la siguiente escena.

La cual muestra si la pregunta se contestó de forma correcta y el detalle de la respuesta, luego de lo cual se vuelve a la pantalla inicial.

La estructura del proyecto

La estructura básica de archivos y directorios que definí para el juego fue la siguiente:

  • Assets
    • audio
      • bien1.mp3: Respuesta correcta
      • click1.mp3: Sonido de ruleta.
      • mal1.mp3: Respuesta incorrecta
      • wclick1.mp3: Botón presionado
    • imagen
      • areapreg.svg: Fondo para texto de pregunta
      • b1.svg – b4.svg: Botones para elegir opción.
      • btn_sig.svg: Botón siguiente.
      • btn_tirar.svg: Botón para girar ruleta.
      • ruleta.svg: Imagen de la ruleta.
      • select_ruleta.svg: Imagen del selector de categoría.
    • js
      • boton.js: Usado para definir el comportamiento de todos los botones.
      • display.pregunta.js: Define el comportamiento del display de preguntas.
      • elemento.juego.js: Código común a todos los elementos del juego.
      • general.js: Usado para definición de funciones auxiliares, como la de conversión de ángulos.
      • listado.preguntas.js: La lista de preguntas en si misma.
      • pantalla.preguntas.js: Se define el comportamiento de la vista de pregunta.
      • pantalla.respuestas.js: Define el comportamiento de la vista de respuesta.
      • pantalla.ruleta.js: Define el comportamiento de la vista de la ruleta.
      • principal.js: Crea la instancia general del juego, define las vistas y gestiona la precarga.
      • puntuador.js: Por ahora no se usa, a futuro para manejar puntajes.
      • ruleta.js: Define el comportamiento de la ruleta.
  • index.html: Importa todos los scripts.

La ruleta

La ruleta consiste en una imagen circular, y al igual que el resto, se trata de una imagen vectorial.

Las categorías están definidas en un arreglo de configuración, de la siguiente forma:

categorias:[
    { id:0, color: '#dfdd48', a_i:0, a_f:0, nombre: 'Mitología'   },
    { id:1, color: '#7d03ff', a_i:0, a_f:0, nombre: 'Deportes'    },
    { id:2, color: '#ff8203', a_i:0, a_f:0, nombre: 'Gastronomía' }, 
    { id:3, color: '#36dc22', a_i:0, a_f:0, nombre: 'Música'      },
    { id:4, color: '#FFFFFF', a_i:0, a_f:0, nombre: 'Ciencia'     },
    { id:5, color: '#0bace8', a_i:0, a_f:0, nombre: 'Política'    },
    { id:6, color: '#bf32b7', a_i:0, a_f:0, nombre: 'Cine'        },             
],

Estando ordenadas de forma antihoraria con respecto a como se definen en la imagen, el parámetro color e id los agregue pensando a futuro, ya que por el momento están hardcodeadas, pero si a futuro hago un backend en donde puedan definirse las mismas, son parámetros necesarios.

La aleatoriedad

Para que la misma se detenga en cada tirada en una posición diferente, definí dos propiedades: aceleración y velocidad que toman valores aleatorios con cada tiro.

tirar(){
        this.resultado_entregado = false;
        this.aceleracion = - ((Math.random() * 3)+3)/30;
        this.velocidad   = Math.floor(Math.random() * 30)+15;
    }

Efecto de giro y sonido

El efecto de giro por el cual comienza girando rápido y luego reduce su velocidad hasta detenerse, no es algo complicado, por ejemplo por cada frame se ejecuta el siguiente código:

update(){
        this.phaserSprite.angle += this.velocidad;

        this.velocidad += this.aceleracion; 

        if (this.velocidad < 0){
            this.velocidad = 0;
            if (!this.resultado_entregado){
                this.resultado_entregado = true;
                this.ultimo_resultado = this.getResultado();
                this.ultima_pregunta = this.listado_preguntas.getPregunta( this.ultimo_resultado );
                this.callback_resultado();
            }
        } else {
            //Se hace el sonido de la ruleta
            this.click_cnt = Math.round(this.phaserSprite.angle/this.intervalo_subdivision);
            if (this.click_cnt != this.click_cnt_ant){
                this.click_cnt_ant = this.click_cnt;
                this.juego.sound.play('click_ruleta');
            }
            
            
        }   

    }

Obtención del resultado

El resultado de la categoría en la cual se detiene la ruleta se obtiene por medio del ángulo en la cual queda al detenerse, el único problema al que me enfrenté es que Phaser define el valor del ángulo de los sprites entre 0 y 180 y luego entre -180 y 0, cuando lo lógico ubiera sido que el mismo se defina entre 0 y 360.

Para suplirlo agregué un par de funciones que se encargan de convertir el valor de los ángulos:

function anguloComunAPhaser( angulo ){
    if (angulo > 180){
        return 360 - angulo;
    }
    return angulo;
}

function anguloPhaserAComun( angulo ){
    if (angulo < 0){
        return angulo + 360;
    }
    return angulo;
}

Para saber en que valor de ángulo comienza y finaliza la categoría, luego de crear la ruleta agregué un for que se encarga de definir los valores de los mismos en el arreglo de categorías:

this.intervalo_subdivision = 360/this.config.categorias.length;

//Se asignan los valores de angulos a las categorias
//Se usan angulos de 0 a 360 como seria lògico
for (let c=0; c < this.config.categorias.length; c++){
    this.config.categorias[c].a_i =  c*this.intervalo_subdivision;
    this.config.categorias[c].a_f = (c+1)*this.intervalo_subdivision;
}

Por lo que una vez que ya están definidos dichos valores, la categoría se obtiene facilmente:

 getResultado(){
        //Se le suma 90º por que el selector esta arriba, no a la derecha de la ruleta
        let pos = anguloPhaserAComun( this.phaserSprite.angle + 90 );
        this.ultimo_resultado = null;

        for (let c=0; c < this.config.categorias.length; c++){
            if ( numeroEntre(pos, this.config.categorias[c].a_i, this.config.categorias[c].a_f) ){
                return this.config.categorias[c];
            }
        }
        return null;
    }

Allí también llamo a una función que se encarga de verificar si el angulo obtenido se encuentra entre dos números sin importar si num1 es mayor a num2 o viceversa (inicialmente la definí así por la forma en la que Phaser define los ángulos):

function numeroEntre(n, num1, num2){
    if (num2 < num1){
        let aux = num2;
        num2 = num1;
        num1 = aux;
    }

    if (n >= num1 && n <= num2){
        return true;
    }

    return false;
}

Obtención de la preguntas:

Las preguntas por el momento están definidas en un arreglo, también hardcodeadas como las categorías, aunque a futuro podría guardarlas en una base de datos y consultarlas vía API.

Creo que lo único interesante de las mismas es que para hacer que no se repitan lo más simple fue borrarlas del arreglo cada vez que saliera una nueva elegida.

Bueno eso es todo por ahora!

Prueba de iluminación dinámica 2D

Hace un tiempo atrás, me interesé por el uso de iluminación dinámica 2D que sería utilizada como un recurso en la programación de juegos HTML5.

Claro, que hay varias opciones, pero la idea principal también es la de aprender mientras se hace, por lo que me propuse a realizar un motor de iluminación dinámica 2D.

Bueno la palabra “motor” a lo mejor le queda muy grande, más bien se trata de un experimento.

El ejemplo en cuestión

Puedes ver el código en: https://github.com/2012lucho/phaser-2d-dinamic-lights

Aquí mismo agrego un ej del mismo en funcionamiento:

En dicha demo, definí dos luces que permanecen inmóviles en su posición, una de ellas es de color verde la otra celeste; adicionalmente agregué tercera luz de color amarillo que se mueve siguiendo la posición del mouse.

¿Como generar el efecto de sombras?

Buscando la manera más sencilla y que a su vez consuma la menor cantidad de recursos posible, se me ocurrió que una buena forma de simular las luces y sombras sería el de utilizar una nueva imagen superpuesta, la cual funciona como si se tratara de una máscara (se le llamará así de ahora en adelante).

Inicialmente dicha imagen debería ocupar el tamaño total de la zona visible y estar siempre por encima de todos los objetos de la escena.

También todos sus pixeles serían negros y con la opacidad al 100%.

Luego se simula el trazado de los rayos de luz de cada una de las luces, de forma secuencial, de forma que cada una de ellas se dibuja en orden.

En cada posición en donde se determina que pasa el rayo de luz, se modifica el pixel correspondiente de la máscara redefiniendo su color y su valor de opacidad, de forma que dicho pixel ahora tenga cierto grado de transparencia, permitiendo ver así los objetos que se encuentran por debajo.

En las posiciones en donde los rayos de luz se superponen, se realiza la suma de sus colores en proporción a un valor correspondiente a la intensidad que tendría la luz en dicha parte del recorrido, para imitar su comportamiento natural.

También hay que tener en cuenta que no pretende ser una simulación 100% realista.

¿Por que se ve tan pixelado?

Seguro sea una de las primeras cosas que salta a la vista, bueno eso se debe a la forma en la cual funciona, por que para cada fotograma se deben hacer miles de cálculos para simular los trazos que realizarían los rayos de luz.

Esto si se hace en una GPU no supondría gran problema ya que están pensadas para ello, pero en este caso los cálculos los realiza un único núcleo de CPU.

Por lo que la forma más fácil que se me ocurrió, para que el sistema de iluminación no consuma grandes recursos, es el de bajar la resolución con respecto al cálculo de luces.

Por lo que la máscara en este caso es 5 veces menor que el área visible, y luego se re-dimensiona para que ocupe la totalidad de la superficie.

Así como también se redució la resolución de la simulación, también se puede definir que la misma no se realice en todos los fotogramas, de forma de minimizar aún más la carga de trabajo.

¿Y los obstáculos?

Sin obstáculos, la luz avanza en linea recta hasta el infinito, en este caso avanza hasta salirse de la pantalla o hasta chocar con un obstáculo.

Por lo que se hace necesario también definir una especie de “mapa de durezas”, por lo que se define una matriz del mismo tamaño que la cantidad de píxeles de la máscara.

Y la idea principal, es que todos aquellos objetos del juego que interactúen con la luz actualicen el mapa de durezas.

Indicando si se trata de un pixel opaco o no, aunque también se podría mejorar de forma de definir grados de transparencia, indice de refracción, etc.